新規粘膜アジュバントの開発

富山県薬事総合研究開発センター 創薬研究開発センター長 相川 幸彦

産学官共創プラットフォーム

目的: 経鼻投与型ワクチンのための新規粘膜アジュバントの開発

外界と常に接する粘膜は、粘液線毛運動など、物理的・化学的バリア機能によ り異物や病原体を排除するために免疫機構が誘導され難い

> 粘膜ワクチンによる効率的な粘膜免疫の誘導には、 有用な粘膜アジュバントが必要

皮下投与型ワクチン

経鼻投与型ワクチン ワクチン

粘膜に分泌型IgA抗体 感染防御効果 血液中にIgG抗体 発症予防

皮下投与型ワクチン		経鼻投与型ワクチン			
一般的な感染症	ワクチンの対象	気道感染症 (インフルエンザなど)			
血液 (全身性)	抗体の誘導箇所	気道粘膜(局所性) 血液(全身性)			
低	抗体の交叉反応性	高			
血液: IgG	抗体種類	粘膜内: 二量体 IgA (多量体IgA) 血液: IgG			
症ならびに重症化予防	期待される効果	感染防御効果+発症ならびに重症化予防			

開発の経緯とデータパッケージ

In vitro評価系 In vivoでの マウス・サルの 作用機序の解析 化合物の探索 ウイルス感染実験 の構築 有効性評価 安全性評価 (市販ライブラリー化合物)

実用化に向けた検討 1. 安全性の検討 3候補化合物

2. 製剤学的な検討 3. 合成法の検討

新規粘膜アジュバント 化合物X (特徴: 2つのToll様受容体(TLR)

アゴニスト構造を持つ)

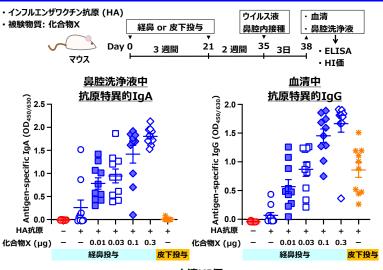
データパッケージ (CDA下,詳細開示予定)

[化合物情報]

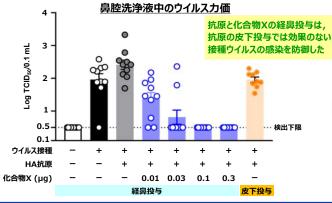
- ·合成法,純度,物理化学的性状
- 安定性
- [安全性に関する情報]
 - -----<予備試験データ> (Non-GLP) ・単回投与毒性試験 (マウス,ラット)
 - ·In vitro遺伝毒性試験

[知財情報]

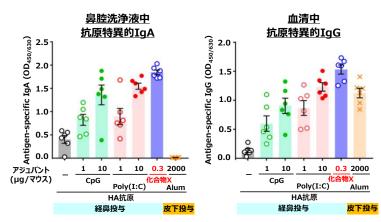
- ・化合物Xに関する特許出願中
- [動態に関する情報]
- <予備試験データ> (Non-GLP)
 - ·血漿中濃度測定法


 - ・血漿への化合物添加,安定性試験

[有効性に関するデータ]

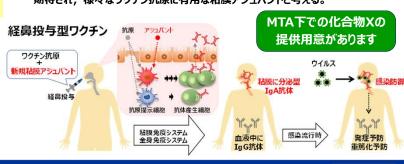

経鼻投与によるアジュバント性能

・インフルエンザワクチンHA抗原 (マウス, ラット)・SARS-CoV-2 Spikeタンパク抗原


インフルエンザワクチンHA抗原+化合物Xの経鼻投与は 鼻粘膜にIgA,血中にIgG抗体を誘導し,ウイルス感染を防御した

<u> </u>											
	HA (µg)	_	0.1	0.1	0.1	0.1	0.1	0.1			
	化合物X (µg)	-	_	0.01	0.03	0.1	0.3	-			
_	Route	-			経鼻投与	,		皮下投与			
幾何平均抗体価 (GMT)	5.0	6.6	15.2	17.4	26.4	42.9	42.9			
GMT変化率(>2.5)		-	1.3	3.0	3.5	5.3	8.6	8.6			
抗体陽転率			0/10	1/10	2/10	5/10	9/10	6/10			
(≧titer; 1:40, GMT 変化率≧4)			0%	10%	20%	50 %	90%	60%			
/). 购出医菜口片/EMA)/	0.左が州の河瓜甘淮										

化合物 X は、CpG ODN (TLR9アゴニスト)や Poly(I:C)(TLR3アゴニスト)よりも低用量で抗体産生を誘導した



まとめ

- ロインフルエンザワクチン HA抗原に 化合物X を併用して経鼻投与することにより,
 - 1)鼻腔粘膜に抗原特異的IqA抗体並びに血清中に抗原特異的IgG抗体が誘導 され、血清HI価を増強することを確認した。
- 2) HA抗原の皮下投与ワクチン(従来型)ではみられない接種インフルエンザウイルス に対する感染防御能を示すことが確認できた。
- ロ化合物Xは、TLR9アゴニストの CpG ODNや TLR3アゴニストの Poly(I:C)に 比して、より低用量で抗体産生を誘導することが分かった。

粘膜アジュバントである化合物Xを抗原に併用して経鼻投与することにより、皮下投 与型ワクチンよりも優れたワクチン効果を発揮した。

化合物Xは、TLRデュアルアゴニスト構造を特徴とする合成有機化合物であり、ス プリットやサブユニットワクチン以外にも, mRNA核酸ワクチンに対しても有効なことが 期待され、様々なワクチン抗原に有用な粘膜アジュバントと考える。

